

Bestimmung der Gesamthärte in Wasser

Beschreibung

Die Bestimmung der Gesamthärte in Wasser erfolgt durch Titration mit dem Natriumsalz der Ethylendiamintetraethansäure (EDTA), die Detektion erfolgt mit einer Cu-Elektrode und Cu-EDTA. Dabei wird die Summe der mit EDTA komplexierbaren Ionen bestimmt. Die Berechnung erfolgt als mmol/l.

Geräte

Titrator	TL 5000 oder höher	
Elektrode	Cu 1100	
Kabel	L1A	
Bezugselektrode	B 2920+	
Kabel	L1N	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Becherglas 150 ml	
	Magnetrührstab 30 mm	

Reagenzien

1	Na ₂ EDTA 0.1 mol/l		
2	Ammoniakwasser 25%		
3	Ammoniumchlorid		
4	Kupfer-EDTA Lösung 0.1 mol/l (Cu(NH ₄) ₂ -EDTA)		
5	Destilliertes Wasser		
6	Elektrolytlösung L300		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

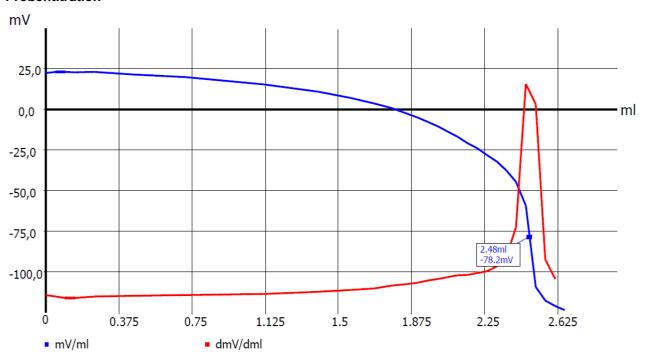
Die Titerbestimmung der EDTA - Lösung erfolgt wie in der Applikationsschrift "Titerbestimmung von EDTA" beschrieben.

Pufferlösung pH 10

54,0g Ammoniumchlorid werden in etwas Wasser gelöst, 350ml Ammoniaklösung 25% zugegeben und mit Wasser auf 1,0l aufgefüllt.

Reinigung der Elektroden

Die Elektroden werden mit destilliertem Wasser gereinigt. Die Cu 1100 wird sauber und trocken gelagert, für die Lagerung der Bezugselektrode eignet sich die Elektrolytlösung L300.


Probenvorbereitung

100,00 ml Probe werden in ein 150 ml Becherglas gegeben, 5 ml der Pufferlösung pH 10 und 1 ml Cu-EDTA 0,1 mol/l zugesetzt. Anschließend wird mit Na₂EDTA 0,1 mol/l titriert. Der Verbrauch sollte bei etwa 5 – 15 ml liegen. Bei sehr harten Wasserproben kann die Probenmenge ggf. reduziert werden, bei sehr weichen Wasserproben kann auch eine EDTA-Lösung geringerer Konzentration verwendet werden.

xylem | Titration 107 AN 2

Titrationsparameter

Probentitration

Standardmethode	Total hardness		
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	5 s
		Max. Wartezeit	12 s
		Messzeit	4 s
		Drift	3 mV/min
Startwartezeit	0 s		
Dynamik	flach	Max. Schrittweite	0.5 ml
_		Steigung bei max. ml	10
		Min. Schrittweite	0.05 ml
		Steigung bei min. ml	120
Dämpfung	keine	Titrationsrichtung	fallend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	120
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

xylem | Titration 107 AN 3

Berechnung:

$$Result \; [mmol/l] = \frac{(EQ1 - B) * T * M * F1}{W * F2}$$

В	0	Blindwert
EQ1		Verbrauch des Titrationsmittels am ersten EQ
Т	WA	Exakte Konzentration des Titrationsmittels
М	1	
V	man	Probenvolumen [ml]
F1	1000	Umrechnungsfaktor 1
F2	1	Umrechnungsfaktor 2

Soll das Ergebnis nicht in mmol/l, sondern in anderen Einheiten angegeben werden, so kann man dies mit den folgenden Faktoren F2 berechnen:

Einheit	F2	
mmol/l	mmol/l	1
deutsche Härte	°dH	0,1783
französische Härte	°fH	0,1
ppm CaCO₃	ppm	0,01

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

